Differential responses of endogenous adult mouse neural precursors to excess neuronal excitation.
نویسندگان
چکیده
Adult neurogenesis in the subgranular zone of the hippocampus (SGZ) is enhanced by excess as well as mild neuronal excitation, such as chemoconvulsant-induced brief seizures. Because most studies of neurogenesis after seizures have focused on the SGZ, the threshold of neuronal excitation required to enhance neurogenesis in the subventricular zone (SVZ) is not clear. Therefore, we examined the responses of SVZ precursors to brief generalized clonic seizures induced by a single administration of the chemoconvulsant pentylenetetrazole (PTZ). Cell cycle progression of precursors was analysed by systemic administration of thymidine analogues. We found that brief seizures immediately resulted in cell cycle retardation in the SVZ. However, the same effect was not seen in the SGZ. This initial cell cycle retardation in the SVZ was followed by enhanced cell cycle re-entry after the first round of mitosis, leading to precursor pool expansion, but the cell cycle retardation and expansion of the precursor pool were transient. Cell cycle progression in the PTZ-treated group returned to normal after one cell cycle. The numbers of precursors in the SVZ and new neurons in the olfactory bulb, which are descendants of SVZ precursors, were not significantly different from those in control mice more than 2 days after seizures. Because similar effects were observed following electroconvulsive seizures, these responses are likely to be general effects of brief seizures. These results suggest that neurogenesis in the SVZ is more tightly regulated and requires stronger stimuli to be modified than that in the SGZ.
منابع مشابه
Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry.
Cellular repair of neuronal circuitry affected by neurodegenerative disease or injury may be approached in the adult neocortex via transplantation of neural precursors ("neural stem cells") or via molecular manipulation and recruitment of new neurons from endogenous precursors in situ. A major challenge for potential future approaches to neuronal replacement will be to specifically direct and c...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملNeural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence.
Reconstruction of neocortical circuitry by transplantation of neural precursors, or by manipulation of endogenous precursors, may depend critically upon both local microenvironmental control signals and the intrinsic competence of populations of precursors to appropriately respond to external molecular controls. Dependence on the developmental state of donor or endogenous precursor cells in ach...
متن کاملConstitutive and induced neurogenesis in the adult mammalian brain: manipulation of endogenous precursors toward CNS repair.
Over most of the past century of modern neuroscience, it was thought that the adult brain was completely incapable of generating new neurons. During the past 3 decades, research exploring potential neuronal replacement therapies has focused on replacing lost neurons by transplanting cells or grafting tissue into diseased regions of the brain. However, in the last decade, the development of new ...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 36 9 شماره
صفحات -
تاریخ انتشار 2012